

Contagion dynamics in high frequency modeling shock impacts in cryptocurrency markets

Danial Florian Saef Wolfgang Karl Härdle Sergej Sizov Man Market Marke

Ladislaus von Bortkiewicz Professor of Statistics IRTG 1792 Humboldt-Universität zu Berlin hu.berlin/irtg1792

Intro to crypto - Bitcoin bigger than largest DAX stock

market cap

€ 200 bn. *

€ 160 bn. *

Many cryptocurrencies

BTC - Bitcoin
LTC - Litecoin
DSH - Dash
XMR - Monero
...

* September 30, 2020

Macro level: strong correlations

Example: contagion effects on a micro scale

Questions raised

What is the structure of the underlying contagion dynamics in cryptocurrency markets?

Can we identify patterns across currencies and exchanges?

Idea: predict contagion effect reactions

High frequency financial data is challenging

A non-parametric model for estimation of true, unobserved price

Identifying jumps - Lee / Mykland (2012)

What are contagion dynamics? Can we find patterns?

To answer these questions, a new dataset has been collected:

- Discontinuous frequency (tick data)
- □ Aggregated to 1, 5, 10, 15 seconds for testing
 - Depending on no. of observations
 - Impute missing data
 - If less than 15 seconds: data is not "high frequency" (definition of high frequency?)

Goal: Ranking of most common contagion patterns for modeling

Observations per exchange / currency

Jumps are varying over time (example: $\alpha = 0.01$)

Jumps in cryptocurrencies

Jumps are varying over time (example: $\alpha = 0.01$)

 Test every currency on every exchange / daily
 # time series: 15.617
 # jumps with α = 0.05 (0.01, 0.001)
 42.097

- ▶ 9.325
- 2.392

Zooming in: spill over effects and waves ($\alpha = 0.01$) Timeline of jumps per time series

bitfinex_xrpusd bitfinex Itcusd

binance_xrpusd binance_btcusd

bitfinex_ethusd bitfinex_etcusd bitfinex_ecusd bitfinex_eosusd bitfinex_btcusd bitfinex_btcusd

Zooming in: spill over effects and waves ($\alpha = 0.01$) Timeline of jumps per time series poloniex_Itcusd poloniex_ethusd poloniex_btcusd hitbtc_xrpusd Negative hitbtc xmrusd hitbtc_xlmusd hitbtc Itcusd jump hitbtc_ethusd hitbtc_etcusd hitbtc eosusd Positive hitbtc dshusd hitbtc btcusd cbpro xrpusd cbpro Itcusd jump cbpro ethusd cbpro_btcusd cbpro bchusd bitstamp xrpusd bitstamp_Itcusd tamp_ethusd bitstamp_btcusd bitstamp bchusd

10:32:00

10:31:00

10:33:00

10:34:00

10:35:00

10:36:00

10:37:00

10:38:00

10:39:00

10:40:00

10:41:00

10:42:00

10:43:00

10:44:00

10:45:00

10:46:00

10:48:00

10:49:00

10:50:00

10:51:00

10:52:0

10:53

10:54

10:47:00

:01:00

Ξ

11:00:00

0:58:00

0:59:00

10:56:00

10:55:

10:57:00

Open problems: Modeling financial contagion after shocks in markets

Exact jump time can only be approximated due to noise

► Is it possible to identify first movers?

How to model transitions between positive / negative jump waves?

- ► Graph models?
- Event trees?

Jumps in cryptocurrencies

Danial Florian Saef Wolfgang Karl Härdle Sergej Sizov

Ladislaus von Bortkiewicz Professor of Statistics IRTG 1792 Humboldt-Universität zu Berlin hu.berlin/irtg1792

References

- Y. Ait-Sahalia and J. Jacod. High-Frequency Financial Econometrics. Princeton University Press, Princeton, July 2014.
 J. Jacod, Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter. Microstructure noise in the continuous case: The pre-averaging approach. Stochastic Processes and their Applications, 119(7):2249–2276, July 2009.
- S. S. Lee and P. A. Mykland. Jumps in equilibrium prices and market microstructure noise. Journal of Econometrics, 168(2):396– 406, 2012.
- M. Podolskij and M. Vetter. Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps. Bernoulli, 15(3):634–658, Aug. 2009.

High frequency financial data is challenging

Example: jumps on April 11 - Lee / Mykland (2012)

BTC exchange rate (USD) / observed during April 11

Example: jumps on April 11 - Lee / Mykland (2012)

Assumption: test statistic $\hat{\xi}$ follows Gumbel distribution, if e.g. $\hat{\xi} > 99$ th percentile > jump

Dataset: No. of observations per exchange / currency

BTC	241 Mio.		
ETH	70 Mio.	Binance	242 IVIIO.
XRP	47 Mio.	OKEx	76 Mio.
LTC	37 Mio.		
BCH	21 Mio.	Coinbase Pro	52 Mio.
ETC	18 Mio.	Ditfinov	
XLM	8 Mio.	DILIIIEX	42 IVIIO.
EOS	8 Mio.	HitBTC	30 Mio.
XMR	4 Mio.		
IOTA	3 Mio.	Bitstamp	14 Mio.
ZRX	2 Mio.	Doloniov	5 Mio
DSH	2 Mio.	Polomex	S IVIIO.

Appendix

